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The behaviour of unsteady planar strong fountains, impinging on a ceiling with an opposing heat flux on
the ceiling, is investigated numerically for 8:0 6 Fr 6 30:0 at Re ¼ 50 and Pr ¼ 7. The height of the ceiling
is varied in 10 6 H=Xin 6 25, where Xin is the half-width of the fountain source, and the non-dimensional
gradient of the temperature difference between the fountain source and the ceiling is varied for
0:2 6 Dh=ðH=XinÞ 6 1:8. It is found that the fountain does not hit the ceiling, but instead stagnates and
spreads at some distance from the ceiling due to the stratification of the fluids in the immediate vicinity
of the ceiling. The scaling and direct numerical simulation results show that the augmented spreading
distance Hd þ Xd has the scaling of Hd þ Xd � XinFr2=9ðH=XinÞ1=2½Dh=ðH=XinÞ��1=3 in the range studied,
where Hd is the maximum fountain height, Xd is the spreading distance measured at Hd , respectively.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fountains (negatively buoyant jets) occur whenever a fluid is
injected upwards into a lighter fluid (or downwards into a denser
fluid). Fountains can be broadly classified as free fountains where
the jet penetrates a finite distance in the ambient fluid and falls
back as a plunging plume around the entering fluid and impinging
fountains where the jet impinges on a flat ceiling or any other
interface and moves outwards along the interface until gravity
forces the intrusion fluid to fall.

Impinging fountains have many engineering applications. A
case of particular interest is in heating and ventilation of buildings
by downward facing jets located at the ceiling. In this case buoy-
ancy effects combined with heat losses through floors and walls
will act to generate stratification. Effective heating and ventilation
of the room will depend on the jet momentum and mixing being
sufficient to counteract the tendency of the heat losses to produce
a stratification and hence accurate prediction of such flows is
essential for effective design of such systems. Similar flows are
encountered in artificially induced circulation used for de-stratifi-
cation in reservoirs to improve the water quality by preventing the
formation of anoxic bottom water, and discharge of sewage dis-
persed into marine environment by mixing.

The characteristics of plane fountains are governed by the
Froude number, the Reynolds number, and the Prandtl number,
defined as,
ll rights reserved.
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inarayana).
Fr � Vinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðqin � q1Þ=q1Xin

p ¼ Vinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðT1 � TinÞXin

p ; ð1Þ

Re � VinXin

m
; ð2Þ

Pr � m
j
; ð3Þ

where Xin is the half-width of the inlet jet. The second expression of
the Froude number applies when the density difference is due to
the difference in temperature of the fountain and the ambient fluids
using the Oberbeck–Boussinesq approximation. For impinging
fountains with opposing buoyancy, additional control parameters
are H, the height of the ceiling, and Dh, the temperature gradient be-
tween the fountain source and the ceiling. Alternatively, the Rich-
ardson number, Ri ¼ 1=Fr2, has also been used in some studies
(see, e.g., [1–3]).

There have been significant studies on both free fountains and
fountains impinging on a solid boundary or a density interface in
both round and planar configurations. Most early studies focussed
on turbulent fountains [4–16]. More recently, laminar ðRe K 200Þ
and weak ðFr K 1:0Þ fountains have also received significant atten-
tion due to their fundamental and application significance [17–22].
Friedman et al. [3] studied the onset of instability in fountains and
obtained the critical Froude number for transition from a steady to
an unsteady fountain as Fr ¼ 2:0 and Fr ¼

ffiffiffi
2
p

for fountains with
uniform and parabolic inlet velocity profiles at the fountain source,
respectively. In a similar study, Srinarayana et al. [23] obtained the
critical Froude number for unsteadiness as Fr ¼ 2:25 with uniform
inlet velocity profile at the fountain source. Williamson et al. [24]
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Nomenclature

b buoyancy flux per unit mass per unit span
Fr Froude number
g acceleration due to gravity
H height of the ceiling
Hd maximum fountain penetration height
m momentum flux per unit mass per unit span
P dimensional pressure
p non-dimensional pressure
Pr Prandtl number
R radius
Re Reynolds number
s non-dimensional temperature stratification number
T dimensional temperature of fluid
U dimensional horizontal velocity
u non-dimensional horizontal velocity
V dimensional vertical velocity
v non-dimensional vertical velocity
X dimensional horizontal coordinate
Xd spreading distance

x non-dimensional horizontal coordinate
Y dimensional vertical coordinate
y non-dimensional vertical coordinate
Zm dimensional fountain height
zm non-dimensional fountain height

Greek symbols
b coefficient of volumetric expansion
j thermal diffusivity
m kinematic viscosity
q fluid density
s non-dimensional time
h non-dimensional temperature of fluid
Dh non-dimensional temperature difference between foun-

tain source and ceiling

Subscripts
in variable index at source
1 variable index of ambient
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conducted a series of experiments on round fountains and classi-
fied different fountain behaviour on a Re—Fr plane and obtained
the critical Reynolds number for transition from a laminar to a tur-
bulent flow as Re � 120.

There have been no detailed studies on impinging fountains op-
posed by a stratification generated by an opposing buoyancy flux
on the upper boundary. However, fountains in a stratified fluid, a
configuration that closely approximates such flows, have been
studied in the past. Bloomfield and Kerr [25,26] conducted both
theoretical and experimental investigations into the behaviour of
turbulent fountains in a confined stratified environment and
showed that the fountain would form an initial front at an interme-
diate height that would continue to rise and ultimately impinge on
the far boundary, completely purging the domain. Lin and Armfield
[27] studied the behaviour of weak axisymmetric and planar foun-
tains resulting from the injection of denser fluid upwards into large
containers containing stably stratified fluid using scaling and
numerical analysis. They obtained the following scaling for the
non-dimensional maximum fountain penetration height zm,

zm ¼
Zm

Xin
� Fr2=3

Re1=3s1=3
; ð4Þ

where s ¼ dh1=dy is the non-dimensional temperature stratification
number, and validated this relation with direct numerical simula-
tion results for 0:2 6 Fr 6 1:0; 20 6 Re 6 200 and 0:1 6 s 6 5:0.
There have been many other numerical investigations on impinging
jets. Some of which are summarised in [28–32]. Other studies on
fountains interacting with a density interface can be found in
[33,34].

In the current paper, the behaviour of two-dimensional imping-
ing plane fountains formed by jets injected vertically upwards into
a homogeneous fluid of lower density with opposing buoyancy is
investigated for 8:0 6 Fr 6 30:0; 10 6 H=Xin 6 25 and 0:2 6 Dh=
ðH=XinÞ 6 1:8 at constant Reynolds and Prandtl numbers of
Re ¼ 50 and Pr ¼ 7. In this case the buoyancy effects are a result
of the temperature variation between the fountain, the ambient
and the ceiling. The scaling for the augmented spreading distance
is presented in Section 2. The configuration and solver are briefly
introduced in Section 3. The time evolution and the flow character-
istics of the impinging fountain and the numerical validation of the
scaling are presented in Section 4, followed by the conclusions in
Section 5.
2. Scaling

The system configuration and typical flow characteristics of the
impinging plane fountains under consideration are illustrated in
Fig. 1. The fluid between a horizontal insulated solid wall at the
bottom and another solid wall at a temperature Tw at the ceiling,
distance H apart, is initially still and isothermal at a temperature
T1. For t P 0 a jet of fluid issues from a slot of width 2Xin on the
floor with a uniform velocity Vin and a temperature Tin < T1. The
flow is assumed to remain two-dimensional. The initial buoyancy
experienced by the fountain until it impinges on the ceiling is a re-
sult of the temperature difference between the source fluid and the
ambient fluid. After that, the stratification of the fluids in the
immediate vicinity of the ceiling due to the temperature difference
between the ambient fluid and Tw at the ceiling will influence the
subsequent fountain flow behaviour, as evidenced by the fact that
the fountain will not directly contact the ceiling, but instead stag-
nates and spreads a distance Xd at some distance from the ceiling
(at the height Hd) before it falls. However, in the absence of any
ceiling the fountain would attain its maximum height Zm which
is equivalent to ðXd þ HdÞ in the current analysis and it is appropri-
ate that the scaling be based on this augmented spreading distance
rather than Hd alone.

As the Reynolds number and the Prandtl number are kept con-
stant in this study, the scale for the augmented spreading distance
Hd þ Xd can be assumed to be expressed in terms of the powers of
the momentum flux min, the buoyancy flux bin, the height of the
ceiling H, and Dh=H as follow,

Hd þ Xd � ma
inbb

inH/ Dh
H

� �f

; ð5Þ

where Dh ¼ ðTw � TinÞ=ðT1 � TinÞ is the non-dimensional tempera-
ture difference between that at the fountain source and that at
the ceiling, and a; b; /, and f are the powers for the corresponding
parameters, which can be determined using dimensional analysis.

The dimensional analysis gives the following scaling for the
augmented spreading distance Hd þ Xd,

Hd þ Xd � XinFr
4
3ð1�/þfÞ H

Xin

� �/ Dh
H=Xin

� �f

: ð6Þ

In non-dimensional form, this scaling becomes,
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Fig. 1. Configuration of the system and the computational domain.
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Hd þ Xd

Xin
� Fr

4
3ð1�/þfÞ H

Xin

� �/ Dh
H=Xin

� �f

: ð7Þ

If the height of the ceiling is large enough such that the fountain
does not impinge (free fountain), Hd þ Xd � Zm with / ¼ 0 and the
fountain is also independent of Dh=H, such that,

zm ¼
Zm

Xin
� Fr

4
3; ð8Þ

which is exactly the same as the scaling obtained by Baines et al. [6]
for turbulent plane fountains. However in the present case, the
powers / and f are unknown and will be evaluated empirically.
There is no previous analytical scaling, obtained from dimensional
analysis, available in the literature.

3. Numerical model

The governing equations are the incompressible Navier–Stokes
equations with the Oberbeck–Boussinesq approximation for buoy-
ancy and the temperature equation. These equations can be writ-
ten in the conservative, non-dimensional form in Cartesian
coordinates as follows,

@u
@x
þ @v
@y
¼ 0; ð9Þ

@u
@s
þ @ðuuÞ

@x
þ @ðvuÞ

@y
¼ � @p

@x
þ 1

Re
@2u
@x2 þ

@2u
@y2

 !
; ð10Þ

@v
@s
þ @ðuvÞ

@x
þ @ðvvÞ

@y
¼ � @p

@y
þ 1

Re
@2v
@x2 þ

@2v
@y2

 !
þ 1

Fr2 h; ð11Þ

@h
@s
þ @ðuhÞ

@x
þ @ðvhÞ

@y
¼ 1

RePr
@2h
@x2 þ

@2h
@y2

 !
: ð12Þ

The following non-dimensionalisation is used for the parameters in
the equations:

x ¼ X
Xin

; y ¼ Y
Xin

; u ¼ U
Vin

; v ¼ V
Vin

;

s ¼ t
ðXin=VinÞ

; p ¼ P

qV2
in

; h ¼ T � T1
T1 � Tin

: ð13Þ
As illustrated in Fig. 1, the initial and boundary conditions are,

u ¼ v ¼ h ¼ 0 when s < 0; ð14Þ

and open boundaries at left and right edges:

@u
@x
¼ 0;

@v
@x
¼ 0;

@h
@x
¼ 0 on x ¼ �L=ð2XinÞ; 8y ð15Þ

isothermal uniform velocity at inlet:

u ¼ 0; v ¼ 1; h ¼ �1 on jxj 6 1; y ¼ 0; ð16Þ

no-slip adiabatic floor:

u ¼ v ¼ 0;
@h
@y
¼ 0 on jxj > 1; y ¼ 0; ð17Þ

no-slip isothermal ceiling:

u ¼ v ¼ 0; h ¼ hw 8x; y ¼ H=Xin; ð18Þ

respectively. It is assumed that the variation of flow variables in the
boundary normal direction at the left and the right open boundaries
is negligible. Further, it is ensured that the open boundaries are suf-
ficiently far from the region of interest.

The results are obtained using Gerris [23,35], an open source
quad-tree based adaptive mesh solver which uses a fractional-step
projection method. The total length of the computational domain is
L ¼ 300Xin, i.e., �150 6 x 6 þ150, and the height H is varied so that
the fountain impinges on the ceiling. A typical adapted mesh is
shown in Fig. 2 for Fr ¼ 10:0; H=Xin ¼ 25 and Dh=ðH=XinÞ ¼ 0:8.
The adaptive meshing is observed for both the fountain and the
stratified fluid layer. The resulting adapted mesh at full develop-
ment, for the example shown in Fig. 2, has 341369 cells with a
time-step of 4:33� 10�4 and a run time of the order of 72 h on a
typical 3.2 GHz Pentium-IV machine with 1 GB RAM.
4. Results

All the results are obtained at a fixed Reynolds number of
Re ¼ 50 and Prandtl number of Pr ¼ 7. An overview of the temper-
ature field evolution for a typical fountain impinging on a ceiling
with opposing buoyancy is shown in Fig. 3 for Fr ¼ 20:0,
H=Xin ¼ 25 and Dh=ðH=XinÞ ¼ 0:8. After initiation, the fountain trav-
els upwards. The fountain advances more slowly with time and the
width of the head increases, as can be seen in Fig. 3a–c. The in-
crease in thickness of the stratified fluid layer due to conduction



Fig. 2. A typical adapted mesh.

Fig. 3. Time evolution of temperature fields for a typical impinging fountain with opposing buoyancy at Fr ¼ 20:0; H=Xin ¼ 25 and Dh=ðH=XinÞ ¼ 0:8, with contour interval
Dh ¼ 0:5.
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from the ceiling is also observed in Fig. 3. In Fig. 3c, the fountain is
seen to impinge and perturb this stratified fluid layer. At some
stage the fountain rise is halted completely and it then stagnates
with the stagnation pressure causing the fluid to spread outwards,
as seen in Fig. 3d. The fountain fluid spreads until the buoyancy
forces the fluid to fall downwards. Some of the falling fluid is re-en-



Fig. 4. Streamlines at Fr ¼ 20:0; H=Xin ¼ 25 and Dh=ðH=XinÞ ¼ 0:8.
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trained back into the upwards moving fountain core, as seen in
Fig. 3e and f and the rest falls down and moves along the floor as
a gravity current. This re-entrainment behaviour is further demon-
strated by the streamline plots in Fig. 4 at s ¼ 150 and 200 which
show a recirculation region on either side of the fountain core. The
fountain is completely symmetric during the time evolution.

Fig. 5 shows the temperature fields for different Fr at H=Xin ¼ 25
and Dh=ðH=XinÞ ¼ 0:8 at full development. A general increase in the
spreading distance with Fr can be seen. The upper impinging re-
gion of the fountain is symmetric for these Froude numbers. Fluid
from the stratified region is seen to be entrained and carried down
by the fountain, with this effect increasing with increasing Fr.

Fig. 6 shows the temperature fields for different Dh=ðH=XinÞ at
Fr ¼ 10:0 and H=Xin ¼ 25 at full development. In this case, the
spreading distance is seen to decrease with increasing Dh=
ðH=XinÞ, which is as expected due to increase in the opposing buoy-
ancy. The fountain also penetrates the stratified layer to a lesser
extent with increasing Dh=ðH=XinÞ.

In Fig. 7 the temperature fields for varying height of the ceiling
at Fr ¼ 10:0 and Dh=ðH=XinÞ ¼ 0:8 are shown at full development. A
general decrease in the spreading distance with increase in H=Xin is
observed. Fig. 7 also shows a change in the intrusion behaviour
with increasing height of the ceiling. The intrusion rises and pene-
trates the stratified fluid layer to some extent for H=Xin ¼ 10, 15
Fig. 5. Temperature fields for different Fr with H=Xin ¼ 25 and Dh=ðH
and 17.5, as seen in Fig. 7a–c. This behaviour is absent for higher
H=Xin.

In the present case, since the ceiling is maintained at a constant
temperature for each simulation, fluid at the fountain temperature
does not contact the ceiling. Instead fluid at the fountain tempera-
ture spreads at some distance from the ceiling due to the stratifica-
tion of the ambient fluid in the immediate vicinity of the ceiling.
The spreading distance is measured on a horizontal line, which is
at a distance of 10% of H from the ceiling such that Hd is 90% of
H and the spreading distance Xd is the distance from the centreline
to the location where the local temperature excess ðT � T1Þ drops
to 90% of the inlet excess ðTin � T1Þ on this line.

4.1. Dh=ðH=XinÞ dependence

Fig. 8 shows the variation of non-dimensional augmented
spreading distance with Dh=ðH=XinÞ for 0:2 6 Dh=ðH=XinÞ 6 1:8 at
Fr ¼ 10:0 and H=Xin ¼ 25. In a previous study, Lin and Armfield
[27] found that the non-dimensional fountain height, zm � s�1=3,
where s ¼ dh1=dy is the non-dimensional temperature stratifica-
tion number. In the present situation, the non-dimensional tem-
perature stratification number is taken as equivalent to the
variation of the non-dimensional temperature over the domain
height, that is, s � Dh=ðH=XinÞ and hence a similar scaling relation
=XinÞ ¼ 0:8 at full development, with contour interval Dh ¼ 0:5.



Fig. 6. Temperature fields for different Dh=ðH=XinÞ at Fr ¼ 10:0 and H=Xin ¼ 25 at full development, with contour interval Dh ¼ 0:5.
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is tried here. As shown in Fig. 8, Dh=ðH=XinÞ�1=3 provides a good fit
to the data and the scaling equation is,

Hd þ Xd

Xin
� 19:6þ 7:69

Dh
H=Xin

� ��1=3

; ð19Þ

with a variation of less than�0:03; f ¼ �1=3 is therefore suitable in
Eq. (7).

4.2. H=Xin dependence

Fig. 9 shows the variation of non-dimensional augmented
spreading distance with H=Xin for 10 6 H=Xin 6 25 at Fr ¼ 10:0
Fig. 7. Temperature fields for different H=Xin at Fr ¼ 10:0 and Dh=ðH
and Dh=ðH=XinÞ ¼ 0:8. It was shown earlier by Holstein and Lemck-
ert [36] and Lemckert [37] that for round fountains impinging on
an insulated ceiling, the non-dimensional augmented spreading
distance � ðH=RinÞ1=2, where Rin is the radius of the nozzle. Similar
scaling is tried here and is seen to provide a good fit to the data in
Fig. 9, and the scaling equation is,

Hd þ Xd

Xin
� �12:5þ 7:9

H
Xin

� �1=2

; ð20Þ

with a variation of less than �0:04; / ¼ 1=2 is therefore suitable in
Eq. (7).
=XinÞ ¼ 0:8 at full development, with contour interval Dh ¼ 0:5.
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4.3. Fr dependence

Fig. 10 shows the variation of non-dimensional augmented
spreading distance with Fr for 8:0 6 Fr 6 30:0 at H=Xin ¼ 25 and
Dh=ðH=XinÞ ¼ 0:8. Since the values of the power indices / and f in
Eq. (7) are now 1/2 and �1/3, respectively, the scaling equation
for constant H=Xin and Dh=ðH=XinÞ reduces to,

Hd þ Xd

Xin
� Fr2=9: ð21Þ

Fig. 10 shows that Fr2=9 provides a good fit to the data in the range of
Fr considered and the scaling equation is,

Hd þ Xd

Xin
� �6:3þ 20:4Fr2=9; ð22Þ

with a variation of less than ±0.03.
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Fig. 9. Variation of the augmented spreading distance with H=Xin at Fr ¼ 10:0 and
Dh=ðH=XinÞ ¼ 0:8.
5. Conclusions

In this paper, the transient behaviour of strong fountains
impinging on a ceiling with opposing buoyancy flux is investigated,
for 8:0 6 Fr 6 30:0; 10 6 H=Xin 6 25 and 0:2 6 Dh=ðH=XinÞ 6 1:8,
using dimensional and numerical analysis. Fountains with uniform
inlet velocity profiles at the fountains source are considered.

A scaling was obtained for the augmented spreading distance
Hd þ Xd by dimensional analysis based on the momentum flux per
unit mass per unit span, min, the buoyancy flux per unit mass per unit
span, bin, the height of ceiling H and the non-dimensional tempera-
ture difference between the fountain source and the ceiling, which
shows that ðHdþXdÞ=Xin�Fr

4
3 ð1�/þfÞðH=XinÞ/½Dh=ðH=XinÞ�f, where

the power indices / and f were obtained numerically.
Numerical simulations were carried out at a fixed Reynolds

number of Re ¼ 50 and Prandtl number of Pr ¼ 7. Initially, qualita-
tive observations were conducted with visualisation of a typical
time evolution of numerically simulated transient temperature
fields of fountains for varying Fr; H=Xin and Dh=ðH=XinÞ, to provide
an overview of the evolution of the fountains. The augmented
spreading distance, Hd þ Xd, was then obtained at a distance of
10% of H=Xin from the ceiling. Quantitative analysis showed that
ðHd þ XdÞ=Xin � Fr2=9ðH=XinÞ1=2½Dh=ðH=XinÞ��1=3 in the range studied,
which supported the analytical scaling.
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